Experimental discovery of a topological Weyl semimetal state in TaP

نویسندگان

  • Su-Yang Xu
  • Ilya Belopolski
  • Daniel S Sanchez
  • Chenglong Zhang
  • Guoqing Chang
  • Cheng Guo
  • Guang Bian
  • Zhujun Yuan
  • Hong Lu
  • Tay-Rong Chang
  • Pavel P Shibayev
  • Mykhailo L Prokopovych
  • Nasser Alidoust
  • Hao Zheng
  • Chi-Cheng Lee
  • Shin-Ming Huang
  • Raman Sankar
  • Fangcheng Chou
  • Chuang-Han Hsu
  • Horng-Tay Jeng
  • Arun Bansil
  • Titus Neupert
  • Vladimir N Strocov
  • Hsin Lin
  • Shuang Jia
  • M Zahid Hasan
چکیده

Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal's surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

π Berry phase and Zeeman splitting of Weyl semimetal TaP

The recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals...

متن کامل

Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2

The recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series MoxW1-xTe2 are inversion-breaking, layered, tunable semimetals already under study as a promising plat...

متن کامل

A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class

Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but a...

متن کامل

A strongly robust type II Weyl fermion semimetal state in Ta3S2

Weyl semimetals are of great interest because they provide the first realization of the Weyl fermion, exhibit exotic quantum anomalies, and host Fermi arc surface states. The separation between Weyl nodes of opposite chirality gives a measure of the robustness of the Weyl semimetal state. To exploit the novel phenomena that arise from Weyl fermions in applications, it is crucially important to ...

متن کامل

Experimental Realization of Type-II Dirac Fermions in a PdTe_{2} Superconductor.

A Dirac fermion in a topological Dirac semimetal is a quadruple-degenerate quasiparticle state with a relativistic linear dispersion. Breaking either time-reversal or inversion symmetry turns this system into a Weyl semimetal that hosts double-degenerate Weyl fermion states with opposite chiralities. These two kinds of quasiparticles, although described by a relativistic Dirac equation, do not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015